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Logic Programming Methods for Searching the Web(Preliminary Report)Helmut Prendinger�University of California, IrvineIrvine, CA 92717-4555Email: hprendin@benfranklin.hnet.uci.eduAbstractIn this paper, we propose a method for approximate reasoning within an abductivelogic programming setting. Our investigation is motivated by applying abductivereasoning to the problem of searching the web. Retrieval of user-relevant information ismodeled as the task of generating abductive solutions (explanations) to a search query.In order to rule out (logically relevant) solutions (web sites) if they are uninterestingto the user, factual relevance criteria are applied. The main contribution of our paperis a well-founded method of restricting the set of abductive solutions in a way thatuser-relevant information (i) can be retrieved even if the knowledge base is partlyexplored, and (ii) is preserved over activated hyperlinks.Topic areas: LP-based net search tools and spiders.1 Introduction and MotivationAs AI research shifts from solving `toy problems' towards real-world applications, methodsare called for that reduce the computational complexity inherent in virtually all interestingproblem solving tasks. If knowledge bases are allowed to contain arbitrarily large amounts ofinformation such as the world-wide web, forms of limited or approximate reasoning will playa predominant rôle. The method of approximate (relevant) reasoning is foundational workas part of a larger enterprise, the design and implementation of a searching softbot (softwarerobot) for the web. The softbot is intended to post queries to multiple search engines (forinstance, Lycos and InfoSeek) and gather the returned pages. Retrieved information ismodeled as abductive solutions to a query. In the spirit of MetaCrawler [24], the softbot isa meta-service relying on standard search engines and concentrates solely on the retrievaltask. The prime target of the softbot is the selection of the most interesting informationrelative to user-needs; that is, in addition to the logical notion of relevance (via reachabilityrelations) we consider forms of factual relevance that depend on user-interests and thedomain under consideration.In this paper, we suggest a method for approximate relevant reasoning that combines(most) advantages of both limited [23] and relevant reasoning [13]. The idea of limited (orapproximate) reasoning is to make reasoning easier by restricting the classical notion ofentailment to a subset S � P 0 of the language [12, 23]; propositional variables p 2 P 0nS�On leave from University of Salzburg, Austria. 1
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are `ignored' in the derivation of the goal. Put more positively, limited reasoning enablespartial views comparable to `focussing attention' in inductive tasks [27]. Computationalsavings are immediate, provided a favorable set S is readily found; yet in [23] no way isshown how to generate the set S of predicates relevant for proving or disproving a givengoal. By employing reachability relations [3] it is guaranteed that only those parts of theknowledge base are accessed that are relevant for (dis)proving a given goal.We will develop our method within an abductive logic programming framework. Inshort, the method approximates the set of all explanations by incrementally re�ning theanswer to a query. Abduction is an inference of the form \from q and q  p infer p", thatis, from q and the implication q  p abduction generates p as a possible explanation forq. Generally, given a knowledge base KB, sentences I (a set of integrity constraints), anda sentence G, the abductive process searches for sets �i of sentences such that [10]: (i)KB [ �i ` G; (ii) KB [ �i [ I is consistent; (iii) �i respects further restrictions thatmake it an `interesting' abductive explanation for G. Multiple explanations �1; :::;�n isa general phenomenon in abductive reasoning. In addition to criteria which help to �lterout `preferred' hypotheses (item ii), explanations are often restricted to some pre-speci�edset A of abducible predicates (item iii). In the literature, A is usually conceived as a setof causes. Since we want to be neutral w.r.t. the status of the outcome of the abductiveprocess, we will call results `abductive solutions' rather than explanations.The paper is organized as follows. In Section 2, we report on a (logical) conceptof relevance due to [3] and relate it to the proof procedure of logic programming. InSection 3, we �rst introduce the notions of abduction problem and abductive solution; theabductive framework will be illustrated by means of a web searching problem. Then anapproximation of the abductive proof procedure is proposed that generates a subset of all(logically) relevant abductive solutions. Section 4 is dedicated to the problem of selectingthe (factually) relevant, that is, interesting solutions to a query. In section 5, we brie
ydescribe the implementation of a prototype agent in Prolog. In the last section we discussrelated work and suggest some re�nements of our framework.2 Relevant and Limited ReasoningMost work on relevance in deductive reasoning [27, 13] relies on processing the `complete'knowledge base. For instance, the relevancy detection algorithm described by Levy andSagiv [13] identi�es irrelevant clauses, but considerations of relevance are made after pre-processing a �xed knowledge base. When searching the web, here conceived as a knowledgebase, the situation is entirely di�erent since the complete knowledge base is never givenin advance. The relevance concept of Br�uning and Schaub [3] is robust for incompletelyprocessed knowledge bases. This is accomplished by so-called reachability relations. Intu-itively, reachability relations select those parts of the knowledge base that are relevant for(dis)proving a given query, that is, a literal K is reachable from a literal L if the derivationof a clause containing K might contribute to a refutation of L. It will turn out that thisnotion of relevance is su�cient for our representation of a web searching problem; if we pro-ceed to more complex domain representations (for instance, Horn formulas with variablesor recursive Horn formulas), we need to formulate relevance by utilizing, for instance, thequery tree idea of Levy and Sagiv [13]. Moreover, Br�uning and Schaub propose to computevalues of further concepts which are intended to estimate the relevance of a literal K toanother literal L; for instance, starting with a literal L the concept of distance measureshow many steps must be taken in order reach a clause with some literal K. The following2
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statement applies to the language of (propositional) Horn clauses.Observation 2.1The set of literals reachable from a literal p is identical to the set of literals resolved uponin the refutation mechanism of SLD-resolution with query ?� p, provided the whole searchtree is explored.What this observation actually tells us is that instead of computing the reachability relation,we can execute a logic program and be con�dent that only relevant literals are resolvedupon. SLD-resolution is a well-known procedure to prove that a given query follows froma Horn program [15]; the SLD mechanism constructs a refutation Q0; :::; Qn where Q0 isthe original query and Qn is the empty clause �, denoting a contradiction. The nextobservation relates the concept of distance to SLD-resolution.Observation 2.2The value of distance d(p; q) corresponds to the minimum number of resolution steps takento resolve upon q, where ?� p is the query.As opposed to the arbitrary choice of `interesting' predicates in the limited reasoningapproach of [23], reasoning with reachability relations is query-sensitive. The same holdsfor the resolution mechanism of SLD-resolution. Below we will show how to approximatethe set of abductive solutions by increasing the distance of literals (relative to a query)considered for computation. In the terminology of [23], this may count as a principled wayto �nd sets S � P 0 of relevant letters.3 Approximating AbductionIn this section we �rst introduce some terminology relevant to abductive logic programming.Then we show how the results of a searching process can be represented as an abductivelogic program. In the main part of the section we suggest an approximate version of theabductive framework.3.1 Basic NotionsLet L be a �rst order language, with the notions of alphabet, term, atom, and literalintroduced as in [15]. Variables are denoted by capital letters X; Y; Z; :::; functors byf=n; g=n; ::: (n for the number of arguments, the arity); constants are treated as 0-aryfunction symbols. Predicate symbols are denoted by p=n; q=n; :::; propositional variablesp; q; ::: are treated as 0-ary predicate symbols. Terms will be denoted by s; t; :::. Forconvenience, tuples of variables (X1; :::; Xn) and (Y1; :::; Ym) are denoted by X and Y ,respectively.A de�nite (or Horn) clause (based on L) is a formula of the form A :�B1; :::; Bn whereA;B1; :::; Bn are atoms. If n > 0, the formula is called a rule, else a fact. An atomic de�nitequery is a formula of the form ?� B where B is an atom. The de�nition for a predicatep=n of L are all clauses with consequent (head) p=n. A (de�nite) logic program P is a setof de�nitions for predicates (not including \="). If a predicate has no de�nition in P , itis called abducible. A is the set of abducible predicates (in P ). A logic program P withpredicates which have no de�nition in P is called abductive.The problem of searching the web can be related to the classical AI problem of searchingin a graph. We perceive of each web page as a node and of the hypertext links to other web3



www.manaraa.com

pages as edges. Note that the web is not of the tree type in which each node has at most oneparent node since more than one web page may set a link to a particular page; moreover,the graph corresponding to the web is not acyclic, that is, some web pages may have linksto ancestor pages. For simplicity, we assume that the graph structure is transformed toacyclic1 tree form by means of pruning nodes that have been visited before.Definition 3.1 (abduction problem)An abduction problem is a quadrupel hP;Q; I;Ai where (i) P is an abductive acyclic (def-inite) program, (ii) Q is an atomic (de�nite) query not containing an abducible predicate,(iii) I is a set of integrity constraints, and (iv) A is a set of abducible predicates.The abductive extension of SLD-resolution is performing the following task [17]: Given aquery Q and a program P , the abductive procedure computes a set � of ground abduciblefacts and an answer substitution � such that P +� ` �(Q).Definition 3.2 (abductive solution)Let hP;Q; I;Ai be an abduction problem. An abductive solution forQ (in P ) is the resultingset �i � L(A) of a SLDA-refutation that satis�es I .Our searching tasks will allow for very simple representations (see Table 1 below). First,programs are ground, that is, they do not contain variables; so we need not bother withuni�cation. For di�erent terms s and t, we have s 6= t. This is the special case n = m = 0of the freeness axiom 8X; Y (f(X) 6= g(Y )) for each pair of di�erent functors f=n and g=min L (n;m � 0). Second, since search results can be represented as de�nite programs, wedo not have to deal with negative information. In e�ect, the representational complexityis on the level of propositional de�nite programs.In fact, we will not deal with abduction problems such that I 6= ; until Section 4 whereintegrity constraints are introduced formally. Intuitively, integrity constraints are used toselect among abductive solutions.3.2 A Simple Searching ExampleGiven a query (a search string entered by the user), a search engine returns a scored listwith references, called hits ; for instance, the list page of Lycos displays the �rst lines of webpages relevant to the query. Each reference (item in the list) contains a click-able stringwhich, when clicked by the user, loads the respective web page. Web pages are createdwith HTML (Hypertext Markup Language).Assume our searching softbot receives the following hits after putting the (generic)query Q = search query to some standard search engines. Note that we only allow foratomic (logical) queries; atomic or complex search queries such as search query1 & ... &search queryn are handled di�erently, by stating integrity constraints corresponding to a(possibly singleton) conjunction of search queries (see, for instance, the musts conditionsin Section 4). Table 1 shows the result of the search process as an abductive logic program.We assume that the HTML document retrieved by a search engine is transformed to ade�nite program. Observe that the (two) links contained in the second hit (Rule (3)) havebeen activated since their contents (keywords) and URL (Uniform Resource Locator) arein the program.Let A be those predicates that have no de�nition in P , that is, A = fkey words; urlg.1We use the property acyclic as introduced in [1], as a subclass of locally strati�ed programs.4
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Table 1: Sample search result to a query.(1) search query :{ hit.(2) hit :{ key words([q, k11, k12, k13]), url(u1).(3) hit :{ key words([q, k21, k22, k23]), url(u2), link(u2).(4) hit :{ key words([q, k31, k32, k33]), url(u3).(5) link(u2) :{ key words([q, k211, k212, k213]), url(u21).(6) link(u2) :{ key words([q, k221, k222, k223]), url(u22).The argument of the predicate key words is a list of keywords occurring on a webpage, including the search query q. In the simplest case, the list is generated by scanningHTML documents for nouns. Associated with each page is a unique internet address(predicate url). The predicate link records hypertext links referring to other web pages.To discriminate links found by standard search engines from links to be activated by users,the former are called `hits' while the latter are uniformely called `links'. As indicated inthe Introduction, abductive solutions to a search query are tuples of an address, (a list of)keywords, and typically (a list of) links. This conception of web pages is su�cient for ourpresent purposes; it is similar to LogicWeb modules [16] (but do not contain Prolog code).A naive searching softbot will start with the retrieval of all web pages that are found byavailable search engines and then follow all hyperlinks (references to other web pages) ofeach retrieved page. This agent will meet at least two obstacles: the �rst is a consequence ofthe sheer size of the web. Since web pages typically feature many hyperlinks to other pages,the process of loading these pages will be very time-consuming; second, not all referencesin web pages are related to the query the page was originally retrieved or references arenot available any more.In our paper, the �rst problem will be addressed by an approximation technique, thatis, we approximate the set of abductive solutions rather than generating them all. Therebyonly relevant (in the sense of reachable) solutions will be created. The second problemis essentially one of factual relevance: the problem of preserving interesting information(relative to user interests) over activated hypertext links.3.3 Bounded SLDAIn order to approximate the abductive process SLDA, we employ consecutively boundeddepth-�rst search [26]. The algorithm performs exhaustive depth-�rst search for increasingdepth bounds 1; 2; :::;m. The following idea does not depend on this strategy; for instance,Lieberman [14] and Davison and Loke [5] employ a bounded breadth-�rst search strat-egy instead. SLDA (SLD-resolution plus abduction inference rule) constructs a refutationhQ0;�0i; :::; hQi;�ii; :::; hQn;�ni where Q0 = Q, �0 = ;, Gn = � and �n is an abductivesolution, that is, a conjunction of abducible predicates.Definition 3.3 (search depth)The depth d of a literal L is the number of (or-)nodes on the path between the root nodeof the search tree (the original query) and the node that contains L. The depth of the root5
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node of the tree is set to 0. Suppose A :�B1; :::; Bn is a de�nite clause. If the depth ofatom A is m, then the depth of each Bi is m+ 1.Let Qi be a conjunction of atoms L1; :::; Lj; :::; Lk and m the depth bound. Supposed(Qi) < m. One atom Lj is selected, for instance, the left-most in Prolog, and one of twosteps is performed: a resolution step or an abduction step.� Resolution step. The atom Lj is resolved with one of the clauses in P . Note thatsince P and Q are ground, we do not have to consider the case where Lj is resolvedwith a non-ground fact in �i. Suppose A : �B1; :::; Bu is the selected clause. InProlog, this is the top-most clause where Lj and A match. Then{ Qi+1 = L1; :::; B1; :::; Bu; :::; Lk{ �i+1 = �i� Abduction step. If Lj is abducible, then{ Qi+1 = L1; :::; Lj�1; Lj+1; :::; Lk{ �i+1 = �i [ fLjgIf the depth bound is met, that is, d(Lj) � m, the procedure halts and reports the abductivesolutions constructed so far. In Fig. 1, the procedure is illustrated graphically. Numberedarcs indicate resolution steps (compare to the numbers of the rules in Table 1), selectedliterals are underlined.Assume the depth of the query search query (Table 1) is set 0. We �x 2 as the depthbound. Then we obtain the following abductive solutions (where I = ;).�1 = f key words([q, k11, k12, k13]), url(u1) g�2 = f key words([q, k21, k22, k23]), url(u2) g�3 = f key words([q, k31, k32, k33]), url(u3) gBy way of example, we show how �1 is generated. The given query search query isresolved with Rule (1) whereby we obtain the goal hit. The new goal can be resolvedwith one of the Rules (2), (3) or (4). In Prolog, it is resolved with the �rst one oc-curring in the knowledge base, that is, Rule (2). As a result, we have the new goalkey words([q; k11; k12; k13]); url(u1). The �rst literal, key words([q; k11; k12; k13]), is se-lected but cannot be resolved with a rule in the knowledge base. Since key words isabducible, key words([q; k11; k12; k13]) is solved through an abduction step by adding itto �. The remaining literal url(u1) is abduced by analogous considerations. Now, all goalsare solved and � = fkey words([q; k11; k12; k13]); url(u1)g.By increasing the depth bound by 1, that is, to 3, all abductive solutions are produced(compare to Fig. 1).�1 = f key words([q, k11, k12, k13]), url(u1) g�2 = f key words([q, k21, k22, k23]), url(u2),key words([q, k211, k212, k213]), url(u21) g�3 = f key words([q, k21, k22, k23]), url(u2),key words([q, k221, k222, k223]), url(u22) g�4 = f key words([q, k31, k32, k33]), url(u3) g6
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search query depth 0?(1)hit depth 1keyws([q,k11,k12,k13]), url(u1) keyws([q,k21,k22,k23]), url(u2), link(u2) keyws([q,k31,k32,k33]), url(u3)?������������) PPPPPPPPPPPPq(3)(2) (4)? ? ?�=fkeyws([q,k11,k12,k13])g �=fkeyws([q,k21,k22,k23])g �=fkeyws([q,k31,k32,k33])gurl(u1) url(u2), link(u2) url(u3)? ? ?�=fkeyws([q,k11,k12,k13]);url(u1)g �=fkeyws([q,k21,k22,k23]);url(u2)g �=fkeyws([q,k31,k32,k33]);url(u3)g� link(u2) depth 2����������9 XXXXXXXXXz(5) (6)keyws([q,k211,k212,k213]), url(u21) keyws([q,k221,k222,k223]), url(u22) depth 3? ?�=fkeyws([q,k21,k22,k23]); url(u2),keyws([q,k211,k212,k213])g �=fkeyws([q,k21,k22,k23]); url(u2),keyws([q,k221,k222,k223])gurl(u21) url(u22)? ?�=fkeyws([q,k21,k22,k23]); url(u2),keyws([q,k211,k212,k213]), url(u21)g �=fkeyws([q,k21,k22,k23]); url(u2),keyws([q,k221,k222,k223]), url(u22)g� �Figure 1: Proof tree of the searching problem for query Q = search query.The depth-bounded extension of SLDA will be called SLDbA. The following result isimmediate since SLDbA restricts the search space to a subset of SLDA's search space.Theorem 3.1 (soundness)If � is the result of a SLDbA refutation, then � is also the result of a SLDA refutation.Of course, the opposite direction (completeness) is not valid.4 Selection among Abductive SolutionsIf the depth bound is not already met, the searching softbot will follow all hypertext linksoccurring in the web pages (that are retrieved by standard search engines like InfoSeekor Lycos). In this way a new list of pages is created that contains further links to yet7
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other web pages. In the logical sense, the generated tree can be characterized as solution-rich since all nodes are abductive solutions to the search query. As activating hypertextlinks is a time consuming process and may lead to pages irrelevant to the user, we haveto apply factual selection strategies. We proceed as follows. First, all abductive solutionsat the �rst level are generated (depth 2 in the example above). At this level, we onlyexpand the best-scored nodes; recall that scoring is a service provided by standard searchengines. In addition, the selection can be re�ned by associating costs with hypertext links,by comparing the internet domains of client and server. Then, links (to other web pages)in the selected pages are activated whereby notions of factual irrelevance help to prune thesearch tree. In this section, we introduce types of factual irrelevance and show how theycan be integrated within the abductive framework. We distinguish two kinds of factualirrelevance: user-speci�ed irrelevance and domain-speci�c irrelevance.The user may specify� Musts. A web page is irrelevant if it does not contain certain keywords. In the�rst place, the page must contain the query (the search string entered by the user);moreover, the user may specify further notions that have to appear on every retrievedpage.Example: the URL of a link must have an \html" extension (indicating a text �le),so that graphic �les \gif", \jpg", and \jpeg" are ruled out as irrelevant.� No-nos. A web page is irrelevant if it contains certain keywords. If the user doesnot want a notion or phrase to be contained on any page, it is called a no-no.Example: if agents is the query we might want to rule out all pages that contain theword \travel"; thereby we suggest our interest in (intelligent) agents as opposed totravel agents.On the other hand, certain phrases can be pre-determined as instances of domain-speci�c irrelevance. Examples include the phrase \URL not found" occurring on a page aswell as outdated pages.Integrity Constraints. As mentioned above, we encode factual irrelevance by meansof integrity constraints: I = Im [ Ino where Im are musts conditions and Ino are no-noconditions (including cases of domain-speci�c irrelevance).� Must constraints. Im is of formatp([:::; t1; :::])^ :::^ p([:::tn:::])such that p is an abducible predicate (here key words2) and for each k (1 � k � n)�i ` p([:::; tk; :::])where ` is the deducibility relation of SLD-resolution; for convenience, we use p([:::; t; :::])to denote that term t occurs somewhere in the list argument of p.� No-no constraints. Ino is of format:(p([:::; t1; :::])_ :::_ p([:::; tm; :::]))2Constraints for URLs are de�ned analoguously and typically restrict certain parts of the internetaddress. 8
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such that p is abducible and for each l,�i [ :p([:::; tl; :::]) is consistent:For instance, let the bound be 3, q and k33 musts, and Ino = ; (compare to Fig. 1); then�4 is the only abductive solution. If k22 is a no-no (bound is 3, q a must), then �1 and�4 remain as solutions.Example 4.1As a concrete example, assume the user is interested in text documents related to intelligentagents for the world-wide web, but not in robotic agents. We haveIm = fkey words([..., \intelligent agents", ...]) ^key words([..., web, ...]) ^ url(*.html)gIno = fkey words([..., robotics, ...])gWe should stress that all links of a web page are skipped if this page does not satisfy theintegrity constraints. Put di�erently, we assume that pages associated with links occurringon some irrelevant (uninteresting) page are also irrelevant. This assumption will turn outas too restrictive (compare to the discussion of LogicWeb [5] in Section 6). Suppose we areinterested in papers related to intelligent agents. If both intelligent agents and papers arespeci�ed as musts, no page will be retrieved that does not contain both phrases. More likely,we will �nd papers describing intelligent agents in links that start from a web site in whichonly agents occurs as a keyword, usually in departmental research pages or homepages ofindividual researchers.In order to deal with those cases we introduce� Conditional constraints. Ic is of formatp([:::; t1;1; :::])_ :::_ p([:::; t1;k1; :::])! p([:::; t1;l1; :::]) :::p([:::; tn;1; :::])_ :::_ p([:::; tn;kn; :::])! p([:::; tn;ln; :::])such that p is abducible, and for each j (1 � j � n)�i ` p([:::; tj;1; :::])_ :::_ p([:::; tj;kj; :::])! p([:::; tj;lj; :::])Conditional constraints have to be provided by the designer of the searching softbot. Ifthe antecedent of a conditional constraint is not satis�ed, the conditional is (vacuously)satis�ed; on the other hand, when the antecedent is satis�ed, the respective keywordoccurring in the conclusion must be contained in the web page. Non-vacuous satisfactionof a conditional constraint is reported to the system, resulting in a higher score for theabductive solution. We intend to incorporate a function InterestingLink : CurrentLink�Constraint ! [0; 1] to the system where CurrentLink is the score of the hyperlink andConstraint encodes (conditional) constraint applications. The value of InterestingLinkis the new score of the page. In this way we prevent the system to retrieve too many pageswithout a handle on how interesting they are for the user.9
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Example 4.2Suppose the user indicates a general interest in intelligent agents and a special interest inpapers related to intelligent agents. The system maps the user's queries into the followingconstraints:Im = fkey words([..., \intelligent agents", ...])gIc = fkey words([..., research, ...]) _ key words([..., homepage, ...])! key words([..., papers, ...])gAnother use of the pre-de�ned constraints is to map the (general) query together withthe respective disjuncts of the antecedent (of the conditional constraint) into musts condi-tions. For instance:Im = fkey words([..., \intelligent agents", ...])^ key words([..., homepage, ...])gIc = fkey words([..., research, ...]) _ key words([..., homepage, ...])! key words([..., papers, ...])gThis approach assumes that, for instance, homepages and research pages are more easilyidenti�able by search engines than pages containing papers.Advanced methods for analyzing HTML documents. The search process discussedin this paper conceives of web pages as a list of keywords [k1; :::; kn] where a keyword isa sequence of letters, delimited by non-letters, and all common English words are deleted.Work on information retrieval [22, 18] develops methods that allow for a more �ne-grainedanalysis of text documents: for instance, stemming re
ects the relation between \agent"and \agents" by �nding the root forms of words; the term-frequency TF (w; d) (count oftimes a word w occurs in a document d) indicates how relevant a document is for a certainkeyword. In our system, keywords in web pages are treated simply as Boolean features(a word is present or absent). Many techniques of information retrieval are employed bymachine learning approaches to identifying interesting web pages (see Pazzani et al. [19]and Joachims et al. [9]).5 ImplementationWe have implemented a prototype of our agent in Prolog; the core program is about sixtylines of code. The approximate abductive procedure can be readily encoded by a Prologmeta-interpreter [25]. The problem of (possibly) cyclic programs is solved by a simplebook-keeping policy. If some predicate p(t) is abduced, this is recorded by asserting thefact is abduced(p(t)) to the knowledge base. In case this fact is to be abduced again,the procedure fails and prunes the remaining computation branch. Moreover, the policyguarantees that all abductive solutions are generated only once; consider the case wheredi�erent web pages set hyperlinks to the same web page. Checking the integrity constraintsamounts to showing that a certain word or phrase is or is not an element of the list argumentof the key words predicate.We are currently looking for a paradigm to integrate the searching agent with the world-wide web. One candidate is the LogicWeb approach of Loke and Davison [16]. Moreover,Cabeza et al. [4] describe a rich internet/www programming library for (constraint) logicprogramming systems, called PiLLoW, that can be used for various web-related tasks. Wehave to concede that our searching agent is a rather theoretical entity, as is stands.10
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6 Discussion and Future WorkIn this paper, we propose approximate (relevant) reasoning within an abductive frameworkas the methodology to design a searching softbot. Both the method of approximate rea-soning and the abductive proof procedure are readily implemented in Prolog. Althoughwe did not prove this yet, we have strong evidence that reasoning this way is tractable. Adistinguished feature of our intended application domain, the web, is that the knowledgebase cannot given in advance because it is too expensive to load all hypertext links occur-ring on web pages. Hence we opted for incrementally building the knowledge base, therebykeeping track of relevant clauses (relative to user queries).Machine learning. When applied to searching problems in the web domain, the successof our approach will heavily rely on sophisticated strategies for eliminating abductive solu-tions. The crucial point is to select most promising links on web pages. Here, investigationsfrom the learning community could give valuable insights:� WebWatcher. Amstrong et al. [2] suggest to compute a function LinkUtility : Page�Goal � User � Link ! [0; 1] such that Page is the current web page, Goal is thesearch query, User is the model of the user, and Link is a hypertext link occurringon the page. The value of LinkUtility is the probability that activating the Link onPage is a step of the shortest path to a page satisfying Goal, relative to User. Thesystem learns by observing users' successful paths from a given web page to somegoal page.� Letizia. The user interface agent of Lieberman [14] is similar to WebWatcher in thesense that it makes suggestions to the user what hyperlinks to activate. The agentmay justify its recommendations by observing the user's past browsing behavior; forinstance, bookmarking a page counts as a strong indicator of interest.� Syskill & Webert. Pazzani et al. [19] describe an agent that may rate web pages basedon a user pro�le. The pro�le is learned by analyzing information on pages that theuser evaluates as either `hot', `lukewarm', or `cold'. The pro�le can also be used togenerate a Lycos query that encodes the user's interests.The solutions generated by our system could be annotated with the value of LinkUtility(WebWatcher) or with the estimated probability that a user would rate a page as `hot'(Syskill & Webert). We leave the possibility to recast our framework in probabilistic terms(Poole [20]) for future research.Web search and pages augmented by Prolog code. The LogicWeb system [5] viewsthe web as a collection of pages connected by hypertext links. In this abstract sense theirconception is very similar to our view of the web. Yet, web pages in LogicWeb (calledmodules) can contain further information in the form of Prolog code that enables moresophisticated forms of search. For instance, take the example where a user wants to �ndpapers relevant to agents. The problem is how to handle relatively uninteresting pages(only containing agents) when there is some chance that they lead to interesting pages(that contain both agents and papers).3 Here LogicWeb exploits the fact that certainclasses of Web pages such as department web sites typically exhibit a standardized page3I am indebted to Seng Loke for clari�cation on this point.11
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type hierarchy that may guide the search process. The class of department web pages isde�ned by means of a predicate composed of that has two page types as arguments.composed of(dept, research)composed of(research, projectcomposed of(project, proj members)composed of(proj members, researcher)If the LogicWeb system arrives at an agent-related research page, it explores the hierarchyto look for a page type that contains the papers, utilizing depth-bounded breadth-�rstsearch. Although we do not have the concept of a page class in our system, we mayformulate (standardized) integrity constraints that encode knowledge about likely placeswhere, for instance, papers are found. We consider to formulate conditions that mirrorpage type hierarchies on the level of integrity constraints.Web query languages. The Information Manifold (IM) of Kirk et al. [11] is intendedto access multiple information sources on the web. The query processor of IM guaranteesthat only those sources are visited that are relevant to the query. By utilizing integrityconstraints in the query modus, the system can identify relevant knowledge bases by theirdescription only and does not have to actually access them. However, it seems to us thatmost of the advantages of IM rely on the fact that information sources are structured.This is quite di�erent to querying the web that is highly unstructured. The integratedactive/deductive/object-oriented data model (ADOOD) of Gianotti and Manco [7] seemsmore suitable to handle poorly structured information.Visualization. The activity of the softbot could be monitored by the Hy+ visualizationsystem of Hasan et al. [8].Abductive procedures for normal abductive programs. The representation lan-guage employed in this paper is propositional and Horn. We argue that this languagefragment is su�cient for basic searching tasks. On the other hand, if the software agenthas to solve tasks such as \print all available papers related to intelligent agents", theexpressiveness of the language has to be extended in order to allow planing a sequence ofactions (�rst �nd the papers, then download, and so on). It should be stressed that plan-ning can be performed within the abductive framework for the Horn subset of �rst-orderlogic augmented by negation-as-failure (Denecker and co-workers [6, 17]). An approximateversion of an abductive reasoner within the extended language is discussed in [21].AcknowledgementsThe author is indebted to the anonymous referees for their stimulating and guiding com-ments. The author is supported by the exchange program Salzburg/Austria-Irvine/USA,and by grants from the �Osterreichische Forschungsgemeinschaft and the Stiftungs- undF�orderungsgesellschaft, Salzburg. 12
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