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Abstract

In this paper, we propose a method for approximate reasoning within an abductive
logic programming setting. Our investigation 18 motivated by applying abductive
reasoning to the problem of searching the web. Retrieval of user-relevant information is
modeled as the task of generating abductive solutions (explanations) to a search query.
Tn order to rule out (logically relevant) solutions (web sites) if they are uninteresting
to the user, factual relevance criteria are applied. The main contribution of our paper
is a well-founded method of restricting the set of abductive solutions in a way that
user-relevant. information (i) can be retrieved even if the knowledge base is partly
explored, and (ii) is preserved over activated hyperlinks.

Topic areas: [.P-based net search tools and spiders.

1 Introduction and Motivation

As AT research shifts from solving ‘toy problems’ towards real-world applications, methods
are called for that reduce the computational complexity inherent in virtually all interesting
problem solving tasks. If knowledge bases are allowed to contain arbitrarily large amounts of
information such as the world-wide web, forms of limited or approzimate reasoning will play
a predominant réle. The method of approximate (relevant) reasoning is foundational work
as part of a larger enterprise, the design and implementation of a searching softhot (software
robot) for the web. The softbot is intended to post queries to multiple search engines (for
instance, Lycos and InfoSeek) and gather the returned pages. Retrieved information is
modeled as abductive solutions to a query. In the spirit of MetaCrawler [24], the softbot is
a meta-service relying on standard search engines and concentrates solely on the retrieval
task. The prime target of the softbot is the selection of the most interesting information
relative to user-needs; that is, in addition to the logical notion of relevance (via reachability
relations) we consider forms of factual relevance that depend on user-interests and the
domain under consideration.

In this paper, we suggest a method for approzimate relevant reasoning that combines
(most) advantages of both limited [23] and relevant reasoning [13]. The idea of limited (or
approximate) reasoning is to make reasoning easier by restricting the classical notion of
entailment to a subset S C P° of the language [12, 23]; propositional variables p € P°\ S
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are ‘ignored’ in the derivation of the goal. Put more positively, limited reasoning enables
partial views comparable to ‘focussing attention” in inductive tasks [27]. Computational
savings are immediate, provided a favorable set S is readily found; yet in [23] no way is
shown how to generate the set S of predicates relevant for proving or disproving a given
goal. By employing reachability relations [3] it is guaranteed that only those parts of the
knowledge base are accessed that are relevant for (dis)proving a given goal.

We will develop our method within an abductive logic programming framework. In
short, the method approximates the set of all explanations by incrementally refining the
answer to a query. Abduction is an inference of the form “from ¢ and ¢ < pinfer p”, that
is, from ¢ and the implication ¢ < p abduction generates p as a possible explanation for
q. Generally, given a knowledge base K B, sentences I (a set of integrity constraints), and
a sentence (7, the abductive process searches for sets A; of sentences such that [10]: (i)
KBUA; F G; (il) KBUA; UT is consistent; (iii) A; respects further restrictions that
make it an ‘interesting’ abductive explanation for (. Multiple explanations Ay, ..., A, is
a general phenomenon in abductive reasoning. In addition to criteria which help to filter
out ‘preferred’ hypotheses (item ii), explanations are often restricted to some pre-specified
set A of abducible predicates (item iii). In the literature, A is usually conceived as a set
of causes. Since we want to be neutral w.r.t. the status of the outcome of the abductive
process, we will call results ‘abductive solutions’ rather than explanations.

The paper is organized as follows. In Section 2, we report on a (logical) concept
of relevance due to [3] and relate it to the proof procedure of logic programming. In
Section 3, we first introduce the notions of abduction problem and abductive solution; the
abductive framework will be illustrated by means of a web searching problem. Then an
approximation of the abductive proof procedure is proposed that generates a subset of all
(logically) relevant abductive solutions. Section 4 is dedicated to the problem of selecting
the (factually) relevant, that is, interesting solutions to a query. In section 5, we briefly
describe the implementation of a prototype agent in Prolog. In the last section we discuss
related work and suggest some refinements of our framework.

2 Relevant and Limited Reasoning

Most work on relevance in deductive reasoning [27, 13] relies on processing the ‘complete’
knowledge base. For instance, the relevancy detection algorithm described by Levy and
Sagiv [13] identifies irrelevant clauses, but considerations of relevance are made after pre-
processing a fixed knowledge base. When searching the web, here conceived as a knowledge
base, the situation is entirely different since the complete knowledge base is never given
in advance. The relevance concept of Briining and Schaub [3] is robust for incompletely
processed knowledge bases. This is accomplished by so-called reachability relations. Tntu-
itively, reachability relations select those parts of the knowledge base that are relevant for
(dis)proving a given query, that is, a literal K is reachable from a literal I if the derivation
of a clause containing K might contribute to a refutation of L. Tt will turn out that this
notion of relevance is sufficient for our representation of a web searching problem; if we pro-
ceed to more complex domain representations (for instance, Horn formulas with variables
or recursive Horn formulas), we need to formulate relevance by utilizing, for instance, the
query tree idea of Levy and Sagiv [13]. Moreover, Briining and Schaub propose to compute
values of further concepts which are intended to estimate the relevance of a literal K to
another literal I; for instance, starting with a literal I the concept of distance measures
how many steps must be taken in order reach a clause with some literal K. The following
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statement applies to the language of (propositional) Horn clauses.

OBSERVATION 2.1

The set of literals reachable from a literal p is identical to the set of literals resolved upon
in the refutation mechanism of SI.D-resolution with query ?— p, provided the whole search
tree is explored.

What this observation actually tells us is that instead of computing the reachability relation,
we can execute a logic program and be confident that only relevant literals are resolved
upon. SI.D-resolution is a well-known procedure to prove that a given query follows from
a Horn program [15]; the ST.D mechanism constructs a refutation Q°, ..., Q™ where Q" is
the original query and Q" is the empty clause [, denoting a contradiction. The next
observation relates the concept of distance to SL.D-resolution.

OBSERVATION 2.2
The value of distance d(p, g) corresponds to the minimum number of resolution steps taken
to resolve upon ¢, where 7— p is the query.

As opposed to the arbitrary choice of ‘interesting’ predicates in the limited reasoning
approach of [23], reasoning with reachability relations is query-sensitive. The same holds
for the resolution mechanism of SI.D-resolution. Below we will show how to approximate
the set of abductive solutions by increasing the distance of literals (relative to a query)
considered for computation. Tn the terminology of [23], this may count as a principled way
to find sets § C P° of relevant letters.

3 Approximating Abduction

In this section we first introduce some terminology relevant to abductive logic programming.
Then we show how the results of a searching process can be represented as an abductive
logic program. In the main part of the section we suggest an approximate version of the
abductive framework.

3.1 Basic Notions

l.et £ be a first order language, with the notions of alphabet, term, atom, and literal
introduced as in [15]. Variables are denoted by capital letters XV, 7, ...; functors by
f/n,g/n, ... (n for the number of arguments, the arity); constants are treated as 0O-ary
function symbols. Predicate symbols are denoted by p/n, q/n, ...; propositional variables
P, q, ... are treated as O-ary predicate symbols. Terms will be denoted by s,#,.... For
convenience, tuples of variables (X1,..., X;,) and (V;,...,Y,,) are denoted by X and Y,
respectively.

A definite (or Horn) clause (based on L) is a formula of the form A : — By, ..., B,, where
A, By, ..., B, areatoms. If n > 0, the formula is called a rule, else a fact. An atomic definite
query is a formula of the form 7— B where B is an atom. The definition for a predicate
p/n of L are all clauses with consequent (head) p/n. A (definite) logic program P is a set
of definitions for predicates (not including “="). If a predicate has no definition in P, it
is called abducible. A is the set of abducible predicates (in P). A logic program P with
predicates which have no definition in P is called abductive.

The problem of searching the web can be related to the classical AT problem of searching
in a graph. We perceive of each web page as a node and of the hypertext links to other web
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pages as edges. Note that the web is not of the tree type in which each node has at most one
parent node since more than one web page may set a link to a particular page; moreover,
the graph corresponding to the web is not acyclic, that is, some web pages may have links
to ancestor pages. For simplicity, we assume that the graph structure is transformed to
acyclic' tree form by means of pruning nodes that have been visited before.

DEFINITTON 3.1 (ABDUCTION PROBLEM)

An abduction problem is a quadrupel (P, Q, I, A) where (i) P is an abductive acyclic (def-
inite) program, (ii) @ is an atomic (definite) query not containing an abducible predicate,
(iii) T is a set of integrity constraints, and (iv) A is a set of abducible predicates.

The abductive extension of SLD-resolution is performing the following task [17]: Given a
query ¢ and a program P, the abductive procedure computes a set A of ground abducible
facts and an answer substitution # such that P+ A+ 6(Q).

DEFINITTON 3.2 (ABDUCTIVE SOLUTION)
Let (P, Q, I, A) be an abduction problem. An abductive solution for @ (in P) is the resulting
set A; C L(A) of a SLDA-refutation that satisfies I.

Our searching tasks will allow for very simple representations (see Table 1 below). First,
programs are ground, that is, they do not contain variables; so we need not bother with
unification. For different terms s and 7, we have s # t. This is the special case n =m =0
of the freeness axiom VX, Y (f(X) # g(Y)) for each pair of different functors f/n and g/m
in L (n,m > 0). Second, since search results can be represented as definite programs, we
do not have to deal with negative information. In effect, the representational complexity
is on the level of propositional definite programs.

In fact, we will not deal with abduction problems such that I # () until Section 4 where
integrity constraints are introduced formally. Intuitively, integrity constraints are used to
select among abductive solutions.

3.2 A Simple Searching Example

Given a query (a search string entered by the user), a search engine returns a scored list
with references, called hits; for instance, the list page of Lycos displays the first lines of web
pages relevant to the query. Each reference (item in the list) contains a click-able string
which, when clicked by the user, loads the respective web page. Web pages are created
with HTML (Hypertext Markup Language).

Assume our searching softbot receives the following hits after putting the (generic)
query Q = search_query to some standard search engines. Note that we only allow for
atomic (logical) queries; atomic or complex search queries such as search_query, & ... &
search_query, are handled differently, by stating integrity constraints corresponding to a
(possibly singleton) conjunction of search queries (see, for instance, the musts conditions
in Section 4). Table 1 shows the result of the search process as an abductive logic program.
We assume that the HTMI, document retrieved by a search engine is transformed to a
definite program. Observe that the (two) links contained in the second hit (Rule (3)) have
been activated since their contents (keywords) and URIL (Uniform Resource Locator) are
in the program.

et A be those predicates that have no definition in P, that is, A = {key_words, url}.

"We use the property acyclic as introduced in [1], as a subclass of locally stratified programs.
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Table 1: Sample search result to a query.

(1) search_query :— hit.

(2) hit == key_words([q, k11, k12, k13]), url(ul).

(3) hit :— key_words([q, k21, k22, k23]), url(u2), link(u2).
(4) hit = key_words([q, k31, k32, k33]), url(u3).

(5) link(u2) - key_words([q, k211, k212, k213]

(6)

6) link(u2) :— key_words([q, k221, k222, k223]

, url(u21).

)
), url(u22).

The argument of the predicate key_words is a list of keywords occurring on a web
page, including the search query ¢. In the simplest case, the list is generated by scanning
HTMI. documents for nouns. Associated with each page is a unique internet address
(predicate url). The predicate link records hypertext links referring to other web pages.
To discriminate links found by standard search engines from links to be activated by users,
the former are called ‘hits” while the latter are uniformely called ‘links’. As indicated in
the Introduction, abductive solutions to a search query are tuples of an address, (a list of)
keywords, and typically (a list of) links. This conception of web pages is sufficient for our
present purposes; it is similar to LogicWeb modules [16] (but do not contain Prolog code).

A naive searching softbot will start with the retrieval of all web pages that are found by
available search engines and then follow all hyperlinks (references to other web pages) of
each retrieved page. This agent will meet at least two obstacles: the first is a consequence of
the sheer size of the web. Since web pages typically feature many hyperlinks to other pages,
the process of loading these pages will be very time-consuming; second, not all references
in web pages are related to the query the page was originally retrieved or references are
not available any more.

In our paper, the first problem will be addressed by an approximation technique, that
is, we approximate the set of abductive solutions rather than generating them all. Thereby
only relevant (in the sense of reachable) solutions will be created. The second problem
is essentially one of factual relevance: the problem of preserving interesting information
(relative to user interests) over activated hypertext links.

3.3 Bounded SLDA

In order to approximate the abductive process SLDA, we employ consecutively bounded
depth-first search [26]. The algorithm performs exhaustive depth-first search for increasing
depth bounds 1,2, ..., m. The following idea does not depend on this strategy; for instance,
Lieberman [14] and Davison and Loke [5] employ a bounded breadth-first search strat-
egy instead. SLDA (SL.D-resolution plus abduction inference rule) constructs a refutation
(QO, A%, (@', ATy, .. (Q™, A™) where Q° = @, A° =), G™ = [0 and A™ is an abductive

solution, that is, a conjunction of abducible predicates.

DEFINITION 3.3 (SEARCH DEPTH)
The depth d of a literal I is the number of (or-)nodes on the path between the root node
of the search tree (the original query) and the node that contains L. The depth of the root
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node of the tree is set to 0. Suppose A : — By, ..., B, is a definite clause. If the depth of
atom A is m, then the depth of each B, is m + 1.

Let Q" be a conjunction of atoms Lq,..., L, ...,Ly and m the depth bound. Suppose
d(Q") < m. One atom L; is selected, for instance, the left-most in Prolog, and one of two
steps is performed: a resolution step or an abduction step.

e Resolution step. The atom I, is resolved with one of the clauses in P. Note that
since P and () are ground, we do not have to consider the case where I.; is resolved
with a non-ground fact in A, Suppose A : — By, ..., B, is the selected clause. In
Prolog, this is the top-most clause where I.; and A match. Then

~ Q' =1I4,....B1,..., By, ... L
o Ai—H — Ai

e Abduction step. If I, is abducible, then

S QM = Lo Ly D T
— AT =ATU{T;}

If the depth bound is met, thatis, d(I;) > m, the procedure halts and reports the abductive
solutions constructed so far. In Fig. 1, the procedure is illustrated graphically. Numbered
arcs indicate resolution steps (compare to the numbers of the rules in Table 1), selected
literals are underlined.

Assume the depth of the query search_query (Table 1) is set 0. We fix 2 as the depth
bound. Then we obtain the following abductive solutions (where T = ).

Ay = { key_words([q, k11, k12, k13]), url(ul) }

Ay = { key_words([q, k21, k22, k23]), url(u2) }

Az = { key_words([q, k31, k32, k33]), url(u3) }
By way of example, we show how Ay is generated. The given query search_query is
resolved with Rule (1) whereby we obtain the goal hit. The new goal can be resolved
with one of the Rules (2), (3) or (4). In Prolog, it is resolved with the first one oc-
curring in the knowledge base, that is, Rule (2). As a result, we have the new goal
key_words([q, k11, k12, k13]), url(ul). The first literal, key_words([q, k11,k12,k13]),is se-
lected but cannot be resolved with a rule in the knowledge base. Since key_words is
abducible, key_words([q, k11, k12, k13]) is solved through an abduction step by adding it
to A. The remaining literal url(u1) is abduced by analogous considerations. Now, all goals
are solved and A = {key_words([q, k11, k12, k13]), url(ul)}.

By increasing the depth bound by 1, that is, to 3, all abductive solutions are produced

(compare to Fig. 1).

Ay = { key_words([q, k11, k12, k13]), url(ul) }

Ay = { key_words([q, k21, k22, k23]), url(u2),
key_words([q, k211, k212, k213]), url(u21) }

Az = { key_words([q, k21, k22, k23]), url(u2),
key_words([q, k221, k222, k223]), url(u22) }

Ay = { key_words([q, k31, k32, k33]), url(u3) }
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search_query depth 0

M)

hit depth 1

(2) (3) (4)

keyws([q.k11 k12 k13]), url(ul) keyws([q,k21,k22 k23]), url(u2), link(u2) keyws([q.k31,k32,k33]), url(u3)

A:{keyws([q,kll,kl?,kl?)])} A:{keyws([q,k?l,k??,k??)])} A:{keyws([q,k31,k32,k33])}L

url(ul) url(u2), link(u2) url(u3)

A = {keyws([q.k11,k12,k13]), | A= {keyws([q.k21,k22 k23]), A = {keyws([q.k31,k32 k33]),
url(u1)} url(u2)} url(u3)}

] link(u2) Ol depth 2
(5) (6)

keyws([q.k211,k212,k213]), url(u21) keyws([q.k221,k222 k223]), url(u22) depth 3

A= {keyws([q,k21,k22,k23])7 url(u2), A= {keyws([q,k21,k22,k23])7 url(u2),
keyws([q,k211,k212,k213])}L keyws([q,k221,k222,k223])}L

url(u21) url(u22)

A:{keyws([q,k21,k22,k23])7 url(u2), A:{keyws([q,k21,k22,k23])7 url(u2),
keyws([q.k211,k212 k213]), url(qu)} keyws([q.k221,k222 k223]), url(u22)}

O O

Figure 1: Proof tree of the searching problem for query @@ = search_query.
The depth-bounded extension of SLLDA will be called SLDbA. The following result is
immediate since SLDbA restricts the search space to a subset of SLDA’s search space.

THEOREM 3.1 (SOUNDNESS)
If A is the result of a SLDbA refutation, then A is also the result of a SLDA refutation.

Of course, the opposite direction (completeness) is not valid.

4 Selection among Abductive Solutions

If the depth bound is not already met, the searching softbot will follow all hypertext links
occurring in the web pages (that are retrieved by standard search engines like InfoSeek
or Lycos). In this way a new list of pages is created that contains further links to yet
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other web pages. In the logical sense, the generated tree can be characterized as solution-
rich since all nodes are abductive solutions to the search query. As activating hypertext
links is a time consuming process and may lead to pages irrelevant to the user, we have
to apply factual selection strategies. We proceed as follows. First, all abductive solutions
at the first level are generated (depth 2 in the example above). At this level, we only
expand the best-scored nodes; recall that scoring is a service provided by standard search
engines. In addition, the selection can be refined by associating costs with hypertext links,
by comparing the internet domains of client and server. Then, links (to other web pages)
in the selected pages are activated whereby notions of factual irrelevance help to prune the
search tree. In this section, we introduce types of factual irrelevance and show how they
can be integrated within the abductive framework. We distinguish two kinds of factual
irrelevance: user-specified irrelevance and domain-specific irrelevance.
The user may specify

e Musts. A web page is irrelevant if it does not contain certain keywords. In the
first place, the page must contain the query (the search string entered by the user);
moreover, the user may specify further notions that have to appear on every retrieved

page.
Fzample: the URL of a link must have an “html” extension (indicating a text file),
so that graphic files “gif”, “jpg”, and “jpeg” are ruled out as irrelevant.

e No-nos. A web page is irrelevant if it contains certain keywords. If the user does

not want a notion or phrase to be contained on any page, it is called a no-no.

Frample: if agents is the query we might want to rule out all pages that contain the
word “travel”; thereby we suggest our interest in (intelligent) agents as opposed to
travel agents.

On the other hand, certain phrases can be pre-determined as instances of domain-
specific irrelevance. Examples include the phrase “URI. not found” occurring on a page as
well as outdated pages.

Integrity Constraints. As mentioned above, we encode factual irrelevance by means
of integrity constraints: T = I, U I,, where I, are musts conditions and I,, are no-no
conditions (including cases of domain-specific irrelevance).

e Must constraints. /,, is of format

Py try DA e Ap([aotnn])

such that p is an abducible predicate (here key_words?) and for each k (1 < k < n)

A+ p([..., tL, ])

where I is the deducibility relation of SL.D-resolution; for convenience, we use p([..., 1, ...])
to denote that term ¢ occurs somewhere in the list argument of p.

e No-no constraints. /,, is of format

(Lo bt DV oV ([ooes b o))

2Constraints for URLs are defined analoguously and typically restrict certain parts of the internet

address.
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such that p is abducible and for each [,

A; U=p([..., t, ...]) is consistent.

For instance, let the bound be 3, ¢ and k33 musts, and 7,,, = 0 (compare to Fig. 1); then
Ay is the only abductive solution. If £22 is a no-no (bound is 3, ¢ a must), then Ay and
A4 remain as solutions.

FExampLE 4.1
As a concrete example, assume the user is interested in text documents related to intelligent
agents for the world-wide web, but not in robotic agents. We have

I, = {key_words([..., “intelligent agents”, ...]) A
key_words([..., web, ...]) A url(*.html)}

I, = {key_words(]..., robotics, ...])}

We should stress that all links of a web page are skipped if this page does not satisfy the
integrity constraints. Put differently, we assume that pages associated with links occurring
on some irrelevant (uninteresting) page are also irrelevant. This assumption will turn out
as too restrictive (compare to the discussion of LogicWeb [5] in Section 6). Suppose we are
interested in papers related to intelligent agents. If both intelligent_agents and papers are
specified as musts, no page will be retrieved that does not contain both phrases. More likely,
we will find papers describing intelligent agents in links that start from a web site in which
only agents occurs as a keyword, usually in departmental research pages or homepages of
individual researchers.
In order to deal with those cases we introduce

e Conditional constraints. /. is of format

Pty e DV eV (Lot gy oo ]) = D[ by gy )
DLt DV ooV (oo b s o) = P(Looes bt )

such that p is abducible, and for each j (1 < j < n)
A+ p([..., tit, ]) V..V p([..., f]"k], ]) — p([..., f]"]], ])

Conditional constraints have to be provided by the designer of the searching softbot. If
the antecedent of a conditional constraint is not satisfied, the conditional is (vacuously)
satisfied; on the other hand, when the antecedent is satisfied, the respective keyword
occurring in the conclusion must be contained in the web page. Non-vacuous satisfaction
of a conditional constraint is reported to the system, resulting in a higher score for the
abductive solution. We intend to incorporate a function Interesting Link : C'urrent Link x
Constraint — [0,1] to the system where CurrentLink is the score of the hyperlink and
C'onstraint encodes (conditional) constraint applications. The value of InterestinglLink
is the new score of the page. In this way we prevent the system to retrieve too many pages
without a handle on how interesting they are for the user.
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FExAMPLE 4.2

Suppose the user indicates a general interest in intelligent agents and a special interest in
papers related to intelligent agents. The system maps the user’s queries into the following
constraints:

I, = {keywords([..., “intelligent agents”, ...])}
I. = {key_words([..., research, ...]) VV key_words(]..., homepage, ...])
— key_words([..., papers, ...])}

Another use of the pre-defined constraints is to map the (general) query together with
the respective disjuncts of the antecedent (of the conditional constraint) into musts condi-
tions. For instance:

I, = {key_words([..., “intelligent agents”, ...])
A key_words(][..., homepage, ...]) }

I. = {key_words([..., research, ...]) VV key_words(]..., homepage, ...])
— key_words([..., papers, ...])}

This approach assumes that, for instance, homepages and research pages are more easily
identifiable by search engines than pages containing papers.

Advanced methods for analyzing HTML documents. The search process discussed
in this paper conceives of web pages as a list of keywords [ky, ..., k,] where a keyword is
a sequence of letters, delimited by non-letters, and all common English words are deleted.
Work on information retrieval [22, 18] develops methods that allow for a more fine-grained
analysis of text documents: for instance, stemming reflects the relation between “agent”
and “agents” by finding the root forms of words; the term-frequency TF(w,d) (count of
times a word w occurs in a document d) indicates how relevant a document is for a certain
keyword. Tn our system, keywords in web pages are treated simply as Boolean features
(a word is present or absent). Many techniques of information retrieval are employed by
machine learning approaches to identifying interesting web pages (see Pazzani et al. [19]
and Joachims et al. [9]).

5 Implementation

We have implemented a prototype of our agent in Prolog; the core program is about sixty
lines of code. The approximate abductive procedure can be readily encoded by a Prolog
meta-interpreter [25]. The problem of (possibly) cyclic programs is solved by a simple
book-keeping policy. If some predicate p(t) is abduced, this is recorded by asserting the
fact is_abduced(p(t)) to the knowledge base. In case this fact is to be abduced again,
the procedure fails and prunes the remaining computation branch. Moreover, the policy
guarantees that all abductive solutions are generated only once; consider the case where
different web pages set hyperlinks to the same web page. Checking the integrity constraints
amounts to showing that a certain word or phrase is oris not an element of the list argument
of the key_words predicate.

We are currently looking for a paradigm to integrate the searching agent with the world-
wide web. One candidate is the LogicWeb approach of T.oke and Davison [16]. Moreover,
Cabeza et al. [4] describe a rich internet/www programming library for (constraint) logic
programming systems, called PiLLoW, that can be used for various web-related tasks. We
have to concede that our searching agent is a rather theoretical entity, as is stands.

10
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6 Discussion and Future Work

In this paper, we propose approximate (relevant) reasoning within an abductive framework
as the methodology to design a searching softbot. Both the method of approximate rea-
soning and the abductive proof procedure are readily implemented in Prolog. Although
we did not prove this yet, we have strong evidence that reasoning this way is tractable. A
distinguished feature of our intended application domain, the web, is that the knowledge
base cannot given in advance because it is too expensive to load all hypertext links occur-
ring on web pages. Hence we opted for incrementally building the knowledge base, thereby
keeping track of relevant clauses (relative to user queries).

Machine learning. When applied to searching problems in the web domain, the success
of our approach will heavily rely on sophisticated strategies for eliminating abductive solu-
tions. The crucial point is to select most promising links on web pages. Here, investigations
from the learning community could give valuable insights:

o WebWatcher. Amstrong et al. [2] suggest to compute a function LinkUtility : Page x
Goal x User x Link — [0,1] such that Page is the current web page, Goal is the
search query, User is the model of the user, and Link is a hypertext link occurring
on the page. The value of LinkUtility is the probability that activating the Link on
Page is a step of the shortest path to a page satisfying (Goal, relative to User. The
system learns by observing users’ successful paths from a given web page to some

goal page.

e [etizia. The user interface agent of Lieberman [14] is similar to WebWatcher in the
sense that it makes suggestions to the user what hyperlinks to activate. The agent
may justify its recommendations by observing the user’s past browsing behavior; for
instance, bookmarking a page counts as a strong indicator of interest.

o Syskill & Webert. Pazzani et al. [19] describe an agent that may rate web pages based
on a user profile. The profile is learned by analyzing information on pages that the
user evaluates as either ‘hot’, ‘lukewarm’, or ‘cold’. The profile can also be used to
generate a [Lycos query that encodes the user’s interests.

The solutions generated by our system could be annotated with the value of LinkUtility
(WebWatcher) or with the estimated probability that a user would rate a page as ‘hot’
(Syskill & Webert). We leave the possibility to recast our framework in probabilistic terms
(Poole [20]) for future research.

Web search and pages augmented by Prolog code. The LogicWeb system [5] views
the web as a collection of pages connected by hypertext links. In this abstract sense their
conception is very similar to our view of the web. Yet, web pages in LogicWeb (called
modules) can contain further information in the form of Prolog code that enables more
sophisticated forms of search. For instance, take the example where a user wants to find
papers relevant to agents. The problem is how to handle relatively uninteresting pages
(only containing agents) when there is some chance that they lead to interesting pages
(that contain both agents and papers).® Here TLogicWeb exploits the fact that certain
classes of Web pages such as department web sites typically exhibit a standardized page

*T am indebted to Seng T.oke for clarification on this point.
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type hierarchy that may guide the search process. The class of department web pages is
defined by means of a predicate composed_of that has two page types as arguments.

composed_of(dept, research)

composed _of

(
composed_of(research, project

(project, proj_members)

(

composed_of(proj_members, researcher)

If the LogicWeb system arrives at an agent-related research page, it explores the hierarchy
to look for a page type that contains the papers, utilizing depth-bounded breadth-first
search. Although we do not have the concept of a page class in our system, we may
formulate (standardized) integrity constraints that encode knowledge about likely places
where, for instance, papers are found. We consider to formulate conditions that mirror
page type hierarchies on the level of integrity constraints.

Web query languages. The Information Manifold (IM) of Kirk et al. [11] is intended
to access multiple information sources on the web. The query processor of IM guarantees
that only those sources are visited that are relevant to the query. By utilizing integrity
constraints in the query modus, the system can identify relevant knowledge bases by their
description only and does not have to actually access them. However, it seems to us that
most of the advantages of IM rely on the fact that information sources are structured.
This is quite different to querying the web that is highly unstructured. The integrated
active/deductive/object-oriented data model (ADOOD) of Gianotti and Manco [7] seems
more suitable to handle poorly structured information.

Visualization. The activity of the softbot could be monitored by the Hy™ visualization
system of Hasan et al. [8].

Abductive procedures for normal abductive programs. The representation lan-
guage employed in this paper is propositional and Horn. We argue that this language
fragment is sufficient for basic searching tasks. On the other hand, if the software agent
has to solve tasks such as “print all available papers related to intelligent agents”, the
expressiveness of the language has to be extended in order to allow planing a sequence of
actions (first find the papers, then download, and so on). Tt should be stressed that plan-
ning can be performed within the abductive framework for the Horn subset of first-order
logic augmented by negation-as-failure (Denecker and co-workers [6, 17]). An approzimate
version of an abductive reasoner within the extended language is discussed in [21].
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